主页>电机技术资料>内容 |
多伺服控制模式的运动控制系统研究与应用
来源:www.dianji114.com.cn 作者:电机百事通 发布时间:2008-06-14 |
||||||
|
运动控制(Motion Control)是在电驱动技术研究的基础上,随着科学技术的发展而形成的一门综合性多学科的交叉技术[1]。在当今自动化技术中,运动控制代表着用途最广而又最复杂的任务。运动控制系统的发展可以实现驱动控制功能的多样化和复杂性,从而满足新的生产要求,同时运动控制系统的发展将带来生产的灵活性,产品质量的提高和设备成本降低[2]。要实现驱动控制功能的多样化和复杂性,使得运动控制系统具有高速度、高精度、高效率和高可靠性四位一体的高性能控制,伺服控制是基础和关键的技术之一[3]。文章中通过多伺服控制模式使得运动控制系统能够实现高性能的运动控制和多样化的运动功能。实现了坐标平台的精确往返运动控制和滚筒的连续匀速旋转运动控制。 位置/速度伺服控制模式 在某些传动领域内,既需要对某些被控对象实现高精度的位置控制,同时又需要对其它被控对象实现各种不同的运动控制功能。单一的伺服控制模式,无论是位置伺服控制、速度伺服控制还是转矩伺服控制往往都很难实现。实现对被控对象的高精度位置控制的一个基本条件是需要有高精度的执行机构。以永磁同步电机及其伺服驱动器为执行部件的交流伺服系统能以较低的成本获取极高的位置控制,同时永磁同步电机及其驱动器具有位置伺服控制、速度伺服控制和转矩伺服控制等多种伺服控制模式,可以很好地实现对各种被控对象的不同运动控制要求。 在位置伺服控制模式下,通过输入的脉冲数来使电机定位运行,电机转速与脉冲频率相关,电机转动的角度与脉冲个数相关。伺服驱动器接收上位数控装置发出的位置指令信号(脉冲/方向),送入脉冲列形态,经电子齿轮分倍频后,在偏差可逆计数器中与反馈脉冲信号比较后形成位置偏差信号。位置偏差信号经位置环的复合前馈控制器调节后,形成速度指令信号。速度指令信号与速度反馈信号(与位置检测装置相同)比较后的偏差信号经速度环比例积分控制器调节后产生电流指令信号,在电流环中经矢量变换后,由SPWM输出转矩电流,控制交流伺服电机的运行。为了提高位置伺服控制模式时实时自动增益调整的精度,驱动器中增加了适配增益功能,其作用就相当于自动加入一个增益,使稳定(停止到位)时间最短。 在速度伺服控制模式下,直接通过电位器调整输入伺服电机驱动器的直流电压(模拟量速度指令)来调节电机速度。实现速度在0~3000r/min之间可调,并且电机可以在该速度范围内以一恒定的速度持续运行。伺服驱动器采用负载模型以估测电机转速从而提高响应性能,并减弱停止后的振动,即时的速度观测器就是用来提高速度检测精度的。 以伺服电机及其驱动器作为执行部件,把位置伺服控制模式和速度伺服控制模式结合起来实现的运动控制系统,既能达到系统高精度、高速度、响应快、调速范围宽、低速高转矩的高性能控制,又能实现在同一个系统中对多种被控对象、多种控制功能分布式控制。 位置/速度伺服控制模式的应用 在某过程实验中,需要对4个单坐标平台实现精确的往返运动,同时对另外4个滚筒实现连续匀速的旋转运动。如果采用单一的伺服控制模式很难实现,即便实现起来也需要增加硬件设备,从而增加成本。因此,考虑对整个系统实现多伺服控制模式的方案,同时采用位置伺服控制模式和速度伺服控制模式。对控制单坐标平台往返运动的电机采用位置伺服控制模式,而对控制滚筒作连续匀速旋转运动的电机采用速度伺服控制模式。 系统的组成 该系统基于位置/速度多伺服控制模式,控制硬件主要是由PC机、运动控制卡(德国MOVTEC公司的DEC4T运动控制卡)、带伺服驱动器的永磁同步伺服电机。采用位置伺服控制模式的电机,通过运动控制卡内部对信号处理运算以后给伺服驱动器发出一定频率的脉冲和方向指令,伺服驱动器对运动控制板卡发来的信号经过PID等控制运算后输出电压信号,产生力矩使电机按照指令运转。伺服运动控制卡DEC4T是基于PC机的专用模拟运动控制卡,与PC机的ASI扩展插槽相连接,控制轴数为1~4轴,最多可以控制4轴4联动。因此,系统中可以通过控制电机运转,同时控制4个单坐标平台的往返运动。 |
|||||
|
把您喜欢的内容收藏到QQ书签或者各种书签内,可以通过书签分享给您的朋友哦!还可以让您快速方便的再次阅读哦! |
Powered by dianji114 © 2004-2008 电机百事通 本站部分信息来自互联网 若有版权问题请及时与本站联系. |